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Abstract. In this work, a class of optimal control problems for a rod (plate) heating process with 

feedback, when the incoming information about the state of the process is continuously received 

only from its individual points, at which some temperature sensors are placed, is investigated. The 

heating process itself takes place in a stove at the expense of controlling the temperature inside the 

stove. The mathematical model of the controlled process is in both cases described by a punctual 

loaded parabolic type equation.  In the work, we derive formulae for the gradient of the functional.  

Algorithms of numerical solutions to the considered problems are proposed. 
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1.       Introduction   
 

Numerous publications deal with the problems of optimal feedback control 

(control design) of plants (processes) with lumped and distributed parameters. The 

findings in the area of feedback control systems concern mostly the lumped-

parameter linear plants obeying the systems of differential equations with ordinary 

derivatives [10, 16, 17]. The published results on the distributed-parameter 

systems are scarce, and they concern particular classes of problem formulations 

[6, 7, 9, 10, 14, 15, 18]. 

The present paper is devoted to a class of problems of optimal feedback 

control of heating of rods (plates) where the information about the process state 

arrives continuously only from individual points where the temperature sensors 

are mounted. The rods are heated in the furnace by controlling the internal 

temperature. Consideration was also given to the case where the observation of 

rod (plate) heating is carried out at individual points at predefined discrete time 

instants. In both cases, the mathematical model of the controlled process is 

reduced to the pointwise loaded parabolic equation [8, 12, 13]. The control actions 

are calculated from the results of the continuous or discrete observation of the 

process at the observation points at the predefined time instants. 

A numerical method based on the earlier studies of the present authors is 

proposed [1, 3-5]. 
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2.      Problem statement 

 

Let homogenous rods of the length l  be sequentially (or simultaneously, but 

independently of each other) heated in a heating stove at the expense of the 

temperature )(t  produced by an external source and identical in all the heating 

stove. Then, the process of heating each rod is described by the following 

differential equation of parabolic type: 

  ,],0[),0(),(,),()(),(),( 2 Tltxtxuttxuatxu xxt  
  
  (1) 

with boundary conditions 

    ,],0[,)(),0(),0( Ttttutux      (2) 

    ,],0[,)(),(),( Ttttlutlux      (3) 

where 02  const
c

k
a


 is thermal conductivity coefficient; 




c

h
  and 

k

h
  are reduced coefficients of heat exchange between environment and the 

rod in the heating stove along the length and at the ends of the rod 

correspondingly; h  is heat exchange coefficient; k  is heat conductivity 

coefficient; c  is specific heat coefficient;   is the density of the material. 

The initial temperature of the rods, for the sake of simplicity, is considered 

constant along their lengths, but different for each rod. At that, we have some 

admissible set (interval) ],[ BBB   of possible values of the temperature: 

,],0[,)0,( lxBconstbxu                  (4) 

and the density function )(bB of initial temperatures is given, where 

 
B

BB Bbbdbb .,0)(,1)(      (5) 

The current temperature Litxu i ...,2,1,),(   is measured at L  points ],0[ lxi   of 

all the rods with the help of sensors. Depending on the values of the temperature 

at the sources, the current temperature )(t is assigned inside the heating stove. 

Let Lii ,...,2,1,   be weighting coefficients characterizing the importance 

of taking into account the values of the temperature at the measured points, at that 

Lii

L

i

i ,...,2,1,10,1
1




 .                              (6) 

The value 
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1

Tttxutu
L

i
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is the current value of the “averaged” temperature of the rod according to the 

measured data. This value is used to form a feedback control for the heating stove: 

,),()()(~)(),;()(
1
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i

ii txutKtutKKtt    (7) 
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where )(tK  is control parameter defining the temperature of the heating stove. 

The vector ),...,,( 21 L  , in the general case, may be a function of time, but 

for the sake of simplicity, we consider it to be invariable and unknown. 

 Taking into account (7) in (1)-(3), we obtain the boundary problem of the 

form: 

,],0[),0(),(

,),(),()(),(),(
1

2

Tltx

txutxutKtxuatxu
L

i

iixxt











 




                     (8) 
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 (9) 

],0[,),()(),(),(
1

TttxutKtlutlu
L

i

iix 







 



 .    (10) 

Problem (8)-(10) is called a pointwise loaded problem, as unknown values 

of the phase variable at different points of the space variable are present in its 

right-hand side. 

In practical applications, there may be certain technological constraints 

imposed on the control parameter )(tK : 

KtKK  )( , ,],0[ Tt                   (11) 

where KK ,  are given upper and lower admissible values of the magnification 

constant correspondingly.  

 Suppose we have the following performance criterion: 
2

02

2

],0[01
2

)()();,(),( LRTLB

B

KtKdbbbKIKJ    ,  (12) 

  

l

dxxUbKTxuxbKI
0

2
)(),,;,()();,(  ,   (13) 

where )(xU  is given function; 0)( x  is given weighting function; 

);,;,( bKtxu   is the solution to boundary problem (8)-(10) in the presence of 

control parameters ),(tKK   and of initial condition ],0[,)0,( lxbxu  ; 
LRRK  0

1

021 ,,0,0   are regularization parameters satisfying (6) and 

(11). 

 The case when the observation over the heating process at the points 

xi Lilx ...,2,1,],0[   of the rod is carried out not continuously, but at given 

discrete moments of time TttLjTt
tLtj  ,0,,...,1,0,],0[ 0 , is of practical 

interest. The temperature inside the heating stove is assigned according to the 

results of observation, and is constant at the interval of time between any two 

observations, and is determined, for example, by the formula: 

.,...,2,1),[,,),()( 1

1

1 tjjj

L

i

jiij LjtttconstKconsttxuKt
x

 



  (14) 

It is possible to make use of the “memory” to measure the values of the 

temperature at time using the formula 
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          (15) 

where  i  are weighting coefficients of the importance of taking into account the 

value of the temperature at i
th

 point ix  at  th
 measurement at )1( j

th
 time 

interval, i.e. at the moments of time 1,...,1,0,  jt  . 

 The control problem is reduced to seeking the finite-dimensional vector of 

parameters ),...,(,),...,( 11 xt LLKKK    in case of (14), and the matrix 

txij LjLi ,...,2,1,,...,1)),((    in case of (15). For both cases, the 

computation given below is not altered significantly; that is why we consider only 

control of type (7). 

 

3. Formula for the gradient of the functional  

 

For the numerical solution to parametrical optimal control problem (8)-(13), 

i.e. for the determination of function )(tK  and of finite-dimensional vector of 

parameters  , we propose to use first order optimization methods [11]. 

 From (8)-(13), taking into account the independence of the initial 

conditions of each other, and therefore the independence of the solution to 

boundary problems (8)-(10) for different initial conditions Bb)0,( xu , it 

follows the validity of the formula: 
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That is why, in order to apply first order optimization methods, obtain formulas 

for the gradient of functional (13) taking into account boundary problem(8)-(10) 

involving any admissible initial condition: 

Bblxbxu  ],,0[,)0,( .      (16) 

When solving problem (8)-(13) numerically with the application of standard 

first order optimization procedures, at each step of the iteration procedure, we use 

the gradient of the functional. With that end in view, at the current control, it is 

necessary to solve loaded boundary problem (8)-(10) and the following conjugate 

integral-and-differential equation: 

,,..,2,1],,0[),,(

,),()(),()(),(),(

1
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LiTtxxx

txxxdttKtxatx

ii
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i
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l
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        (17) 

with boundary and initial conditions 

  ],,0[,)(),()(2),( lxxUTxuxTx                                         (18) 

],0[,),0(),0( Txttx   , ],0[,),(),( Txtltlx   ,  (19) 

and non-local jump condition at intermediate points Lixi ,...,2,1,   of observation 



V.M. ABDULLAYEV: OPTIMAL CONTROL OF A DYNAMIC SYSTEM… 

 

 
255 

 

  
,,...,2,1),,(),( Litxtx ii         

LittltKtxtx iixix ,...,2,1)),,0(),(()(),(),(    .       (20) 

Theorem. The gradient of the functional in problem (8)-(10) for admissible 

control parameters ),(tKK   is determined by the following formulas 

  ,],0[),)((2)(),(),0(),(

),(),(),(

01

1

2

0 1

TtKtKdbbtlttxua

txudxtxKJgrad

B

L

i

ii

B

l L

i

iiK















  









 (21) 

),(2

)()),(),0((),(),()(

),(

02

0 0

2





















































   dbbdttltadxtxtxutK

KJgrad

B

B

T l

 (22) 

where );,;,(),(),;,;,(),( bKtxtxbKtxutxu    are the solutions to the direct 

and conjugate boundary problems (8)-(13)and(17)-(20) correspondingly at given 

initial admissible condition bxu )0,( . 

 

4.      Numerical scheme of solution to the problem 

 

Formulas (17)-(20) for the gradient of the functional of problem (8)-(13) can 

be obtained using methodsof grids [5] ormethod of lines over time for reducing 

the initial problem to an optimal control problem with respect to a system of 

ordinary loaded differential equations involving non-local boundary conditions [2, 

3]. Then, applying necessary optimality conditions obtained in the work [4] to 

these problems, and passing to limit when the step of discretization over time 

tends to zero, we can obtain formulas (17)-(20). Below, we propose to use method 

of lines to numerically implement the iteration method of gradient projection, 

namely, to solve the boundary problems: direct (8)-(11) and conjugate (17)-(20). 

To solve the optimal control problem for the loaded system of differential 

equations involving non-local boundary conditions, we use the numerical method 

proposed in the works [1-3]. 

In the domain  , introduce the lines tttts NThNssht  ,,...,1,0,  and 

notations .,...,1,0),(,),()( ttsts NsshKKshxuxu   

Approximate boundary problem (8)-(10) by a boundary problem with 

respect to the following loaded system of tN  ordinary differential equations 

involving non-local boundary conditions: 
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],0[,)(0 lxBbxu  .   (25) 

Target functional (13) is approximated, for example, by the formula 
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(26) 

The obtained optimal control problem lies in determining )( LNt   dimensional 

vector of parameters ),...,,,...,(),( 11 LNt
KKK   . In order to solve this problem 

using gradient projection method, give formulas of the gradient of functional (26): 
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. 

 Conjugate boundary problem (17)-(20) is also approximated with the 

application of method of lines by loaded second order ordinary differential 

equations involving non-local boundary conditions 
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,)0()0( ss     ,)()( ll ss     (28) 

LilKxx sssisis ,...,2,1)),0()(()()(    ,        (29) 

which are solved successively from 1 tNs  to 1s  provided that 

 )()()(2)( xUxuxx
tt NN   ,  ),0( lx ,     (30) 

Then, the components of the gradient of the functional of problem (23)-(26) are 

determined by the approximation of formulas (21) and (22) in the following way: 
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The other specific character of these boundary problems is pointwise 

loading of equations (23) and integral loading of equations (27), as well as the 

presence of non-local boundary conditions (24) and (29). In the work [2], for the 

solution to such problems, a numerical solution method is proposed. It is based on 

the shift of boundary conditions, for example, from left to tight successively from 

point 0x  to points lxxx L ,,....,1 , and as a result we obtain nL )1(   (where n  



V.M. ABDULLAYEV: OPTIMAL CONTROL OF A DYNAMIC SYSTEM… 

 

 
257 

 

is the order of the system) algebraic equations with respect to 

))(),(),...,(( 1 luxuxu sLss . After solving this system, the initial boundary problem 

is reduced to a Cauchy problem that is solved from right to left. Analogical 

approach is proposed in [4] for integrally loaded ordinary differential equations 

involving non-local boundary conditions. 

Note that the statement of the optimal feedback control problem and the 

approach to its solution given above can be extended onto other classes of optimal 

control problem with respect to systems with distributed parameters, described by 

other types of partially differential equations. 

 

5. Conclusion 

 

The above approach to the feedback control systems for the distributed-

parameter plants can be extended to the case where the processes are described by 

other classes of boundary problems. Other types of observations (discrete, time 

interval, or their combinations) may be considered as well. This approach can be 

used in the control systems of the processes described by the distributedparameter 

systems. 
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